首页> 外文OA文献 >An improved game-theoretic approach to uncover overlapping communities
【2h】

An improved game-theoretic approach to uncover overlapping communities

机译:一种改进的博弈论方法,用于发现重叠的社区

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

How can we uncover overlapping communities from complex networks to understand the inherent structures and functions? Chen et al. firstly proposed a community game (Game) to study this problem, and the overlapping communities have been discovered when the game is convergent. It is based on the assumption that each vertex of the underlying network is a rational game player to maximize its utility. In this paper, we investigate how similar vertices affect the formation of community game. The Adamic–Adar Index (AA Index) has been employed to define the new utility function. This novel method has been evaluated on both synthetic and real-world networks. Experimental study shows that it has significant improvement of accuracy (from 4.8% to 37.6%) compared with the Game on 10 real networks. It is more efficient on Facebook networks (FN) and Amazon co-purchasing networks than on other networks. This result implicates that “friend circles of friends” of Facebook are valuable to understand the overlapping community division.
机译:我们如何才能从复杂的网络中发现重叠的社区,以了解其固有的结构和功能? Chen等。首先提出了一个社区游戏(Game)来研究这个问题,并且当该游戏收敛时已经发现了重叠的社区。它基于这样的假设,即基础网络的每个顶点都是合理的游戏玩家,可以最大程度地发挥其效用。在本文中,我们研究了相似的顶点如何影响社区博弈的形成。 Adamic-Adar索引(AA索引)已被用来定义新的效用函数。已经在合成网络和实际网络上对这种新颖的方法进行了评估。实验研究表明,与10个真实网络上的Game相比,它的准确性有显着提高(从4.8%到37.6%)。与其他网络相比,它在Facebook网络(FN)和亚马逊共同购买网络上效率更高。该结果表明,Facebook的“朋友的朋友圈”对于了解重叠的社区划分非常有价值。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号